- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Baden, Alex (2)
-
Bridgeford, Eric (1)
-
Burns, Randal (1)
-
Chandrashekhar, Vikram (1)
-
Chevillet, Mark (1)
-
Collman, Forrest (1)
-
Crane, Keenan (1)
-
Crow, Ailey K. (1)
-
Deisseroth, Karl (1)
-
Falk, Benjamin (1)
-
Gion, Timothy (1)
-
Gray Roncal, William (1)
-
Hider, Robert (1)
-
Hsueh, Brian (1)
-
Kazhdan, Michael (1)
-
Kazhdan, Misha (1)
-
Khairy, Khaled (1)
-
Kleissas, Dean M. (1)
-
Lillaney, Kunal (1)
-
Manavalan, Priya (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Conformal parameterizations over the sphere provide high-quality maps between genus zero surfaces, and are essential for applications such as data transfer and comparative shape analysis. However, such maps are not unique: to define correspondence between two surfaces, one must find the Möbius transformation that best aligns two parameterizations—akin to picking a translation and rotation in rigid registration problems. We describe a simple procedure that canonically centers and rotationally aligns two spherical maps. Centering is implemented via elementary operations on triangle meshes in R3, and minimizes area distortion. Alignment is achieved using the FFT over the group of rotations. We examine this procedure in the context of spherical conformal parameterization, orbifold maps, non-rigid symmetry detection, and dense point-to-point surface correspondence.more » « less
-
Vogelstein, Joshua T.; Perlman, Eric; Falk, Benjamin; Baden, Alex; Gray Roncal, William; Chandrashekhar, Vikram; Collman, Forrest; Seshamani, Sharmishtaa; Patsolic, Jesse L.; Lillaney, Kunal; et al (, Nature Methods)
An official website of the United States government
